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1. Introduction 

 
Increasing sampling rates in today’s data acquisition systems leads to more stringent 

requirements in terms of analogue-to-digital converters and sampling circuits. One of those 
requirements, studied in this paper, has to do with jitter and phase noise.  

A typical measurement technique consists in applying a sinusoidal signal to a circuit and 
measuring the parameters of the signal at a given point of that circuit in order to estimate 
something about that circuit. Examples of measurement systems that use this technique, and 
in particular are based on estimating the amplitude of an acquired sine wave, are, just to name 
a few: 
− Impedance measurement – A sinusoidal voltage is applied to the series of an unknown 

impedance and a sampling resistor with known value. The voltage on that resistance is 
then measured, together with the voltage on the unknown impedance, in order to estimate 
the value of the current going through the unknown impedance. The module of the 
impedance is given by the ratio of the two sinusoidal amplitudes [1]. 

− Non-destructive testing using eddy currents – A sinusoidal current is applied to a coil in 
order to produce a sinusoidal magnetic field. That coil is placed close to the surface of the 
material under test in order to induce eddy currents in it. Any defect in the material under 
test will cause a non-uniform eddy current being produced. That current is then 
determined indirectly by measuring its magnetic field with a second coil or giant magneto- 
resistive sensor (GMR). By making the probe scan the surface while estimating, for each 
point, the amplitude of the magnetic field induced by the eddy currents it is possible to 
draw a 2D map the induced currents and from that to detect and characterize defects [2-4]. 

− Strain measurement with strain gauges – One or more strain gauges are typically 
connected in a Wheatstone bridge configuration to estimate the strain to which a given 
surface is subjected to. In applications where noise is a problem, the bridge is powered 
with a sinusoidal voltage. The unbalance voltage, which is also sinusoidal, will have an 
amplitude proportional to the strain to be measured. 
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These are some of the examples of the many that could be given, from analogue-to-digital 
(ADC) converter testing [5-9] to particle size and velocity determination using laser 
anemometry [10], that justify the importance of sinusoidal amplitude estimation in today’s 
world dominated by digital systems. 

There are many sources of uncertainty that affect a data acquisition system, namely, 
additive noise, phase noise, jitter, quantization error, frequency error, harmonic distortion, 
non-linearity [11], among others. All these sources contribute to the uncertainty of 
measurements made with digitized data. In [12] it was shown that the presence of additive 
noise leads to a bias on sinusoidal amplitude estimation using least-mean-squares error sine-
fitting. In [13], an analytical expression for the standard deviation of amplitude estimation as 
a function of harmonic distortion, number of samples and phase noise/jitter standard 
deviation, has been derived. In [14] the bias on sinusoidal amplitude estimation was computed 
from the standard deviation of additive noise and the standard deviation of phase noise/jitter, 
however it is only valid for small amounts of phase noise and jitter. 

Here we present the derivation of an analytical expression which only takes into account 
the effect of phase noise and jitter, but has a wider range of use. It can always be combined 
with the expression derived in [14] to have an account of both additive noise and phase 
noise/jitter which usually are present in practical conditions. 

In [15] the IEEE 1057 standard method [6], which minimizes the square of the residuals, 
was studied. It is pointed out that a bias in the estimated amplitude arises due to jitter at the 
sampling instant. It is also shown how to compute that bias in the asymptotic case (infinite 
number of samples). In the limit when the number of samples goes to infinity, the expression 
presented here tends to the expression given in [15] as will be demonstrated. 

 
2. Least Mean Square Error Sinusoidal Estimation 
 

Consider M data points z1, z2, …, zM given by:  
 

 ( )cos    with   1,...,i x i iz C A t i Mω δ ϕ = + + + = ,    (1) 
 

where C is the offset, A is the amplitude, ϕ is the initial phase,  ωx is the angular frequency ti 
are the sampling instants and δi is the sampling instant jitter. Generally the initial phase of the 
sine wave is not controlled and thus varies from acquisition to acquisition and from 
measurement to measurement.  Statistically we can consider it to be a random variable 
uniformly distributed in an interval of length 2π. In this work we consider only the presence 
of normally distributed jitter at the sampling instants and represent it by a null mean random 
variable δi with standard deviation σt. To ease the derivations that follow, we will introduce 
the random variable θi = ωxδi. This variable will be a null mean random variable with standard 
deviation σθ = ωxσt since it is just a constant (ωx) times a normally distributed random 
variable (δi) with standard deviation σt. Equation (1) can thus be written as: 
 

 ( )cosi x i iz C A tω θ ϕ= + + + .  (2) 
 

We wish to estimate the sine wave that best fits, in a least square error sense, to these M 
points. The estimates of the sine wave are obtained, in a matrix form, with [1]: 
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 ( )
( ) ( )
( ) ( )

( ) ( )

1 1

2 2

1
1 2 22

cos sin 1
cos sin 1

... ... ...
cos sin 1

 with    and   
...

a a

a a

a M a M

I
T T

Q I Q

M

t t
t t

t t

zA
z

A D D D D A A A

C z

ω ω
ω ω

ω ω

−

           = = = + ,             

  (3) 

 

where ωa is the angular frequency of the sinusoid we are trying to adjust to the data. Here we 
will assume that the frequency of the signal is exactly known and its value is used to fit the 
sine wave (ωa = ωx). If the frequency is unknown, a four-parameter sine-fitting algorithm can 
be used to estimate the frequency [6]. This is an iterative procedure that approximates in each 
step the frequency of the sine wave that best fits the data. It terminates when the frequency 
change, from the previous step, is smaller than a chosen bound. There will necessarily be a 
frequency error which will have some impact on the estimation of the other three parameters. 
This, however, is generally considered to be negligible. In the future, further work is required 
to compute the actual effect of frequency error on amplitude estimation in order to gauge its 
importance. 

We will also assume that the number of acquired samples (M) covers exactly an integer 
number of periods (J) of the sine wave we are trying to fit to the data. Consequently, from (3): 

 

 ( )2 2 2
2

,

4 cosI Q i j a i j
i j

A A A z z t t
M

ω = + = − ∑ .  (4) 

 
From now on, for the sake of compactness, we will eliminate the summation limits and 

assume that all indices go from 1 to M. The summation in (4) is thus a double summation on i 
and j which go from 1 to M. 
 
3.  Mean of Square Estimated Amplitude 
 

The expected value of the square of the estimated sine wave amplitude is, from (4): 
 

 { } { } ( )2
2

,

4 cosi j a i j
i j

E A E z z t t
M

ω = − ∑ .  (5) 

 
Note that the expected value of a sum is equal to the sum of the expected values and that 

the expected value of a random variable times a constant is equal to that constant times the 
expected value of the random variable. 

Using (2) we can write: 

 { } ( ) ( ){ }cos cosi j x i i x j jE z z E C A t C A tω θ ϕ ω θ ϕ  = + + + ⋅ + + + ,       (6) 

which can be written as: 

  

{ } ( ) ( ){ } ( ){ } ( ){ }
( ){ } ( ){ }

( ){ } ( ){ }

2 2

2 2 2

cos cos cos cos

1 1           cos 2 cos
2 2

           cos cos

i j x i i x j j x i i x j j

x i x j i j x i x j i j

x i i x j j

E z z C A E t t CAE t CAE t

C A E t t A E t t

CAE t CAE t

ω ϕ θ ω ϕ θ ω ϕ θ ω ϕ θ

ω ω ϕ θ θ ω ω θ θ

ω ϕ θ ω ϕ θ

= + + + + + + + + + + + =

= + + + + + + − + − +

+ + + + + + .

  (7) 

   

Considering that ϕ is a uniformly distributed random variable between 0 and 2π, we have: 
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 { } ( ){ }2 21 cos
2i j x i x j i jE z z C A E t tω ω θ θ= + − + − ,  (8) 

since: 

 ( ){ } ( )1cos cos 0.
2

E a a d
π

π

ϕ ϕ ϕ
π −

+ = + =∫   (9) 

 
To compute the expected value in (8)we have to consider two cases – equal or different 

values of indices i and j. If they are equal then θi and θj cancel each other and we cease to 
have any random variables in the equation. The expected value is thus: 

 

 { } 2 21 .
2i j i j

E z z C A
=
= +   (10) 

 

On the other hand, if the indices are different, we have, considering that θi and θj are 
normally distributed random variables with standard deviation σθ,: 
 

 { } ( ) 22 21 cos ,
2i j x i x j

i j
E z z C A t t e θσω ω −

≠
= + −   (11) 

since: 

 ( ){ } ( ) ( )

2

2 221cos cos cos .
2

E a a e d a eθ θ

θ
σ σ

θ
θ θ θ

πσ

−∞
−

−∞

+ = + =∫   (12) 
 

Having determined { }i jE z z we are now ready to address the determination of { }2
E A  given 

by (5). Notice however that the expression to use for the argument of the double summation is 
different whether indices i and j are equal or not, namely (10) and (11) respectively. In order 
to proceed with the derivation we need to have complete summations, that is, summations 
whose indices span all possible values and that have in its argument a single expression for all 
cases of the indices. The summation in (5) can be divided into two terms: the first one a 
double summation on i and j for i ≠ j using (11) in its argument; and the second one, a simple 
summation on i where j = i using (10) in its argument. The new double summation, however 
can be written as a double summation for all values of i and j (using (11)) minus a simple 
summation with j = i using  (11)in its argument. This leads to: 
 

 
{ } ( ) ( ) 2 22 2 2 2

2
,

2 2 2cos cos .x i x j a i j
i j

E A A t t t t e A e A
M MM

θ θσ σω ω ω − − = − − − + ∑   (13) 

 
Note that the terms in C2 become null because an integer number of periods is acquired. 

Considering that we know the signal frequency and use it for the sine wave we are trying to fit 
to the data, (ωa = ωx), we have: 
  

 { } ( )2 2 22 2 2 2
2

,

1 2cos 2 2 1 ,x i x j
i j

E A A e A e t t A e
MM

θ θ θσ σ σω ω− − − = + − + − 
 ∑   (14) 

 
where we used a trigonometric relation to transform the product of two cosine functions into 
the sum of two cosine functions. Since we are considering that the sine wave fit to the data 
covers an integer number of periods, the summation in i and j is 0, leading to: 
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 { } 2 2
2

2 2 22 1
A

E A A e A e
M

θ θσ σµ − − = = + − 
 

.  (15) 

 
4.  Variance of Estimated Square Amplitude 
 

The variance of a random variable can be expressed as the difference between the second 
moment and the square of the mean. In the case of the variance of the squared estimated 
amplitude this leads to: 

 { } { }2
4 22 2

A
E A E Aσ = − .  (16) 

Using (4) it is possible to write: 
 

 ( ) ( )
4

4
, , ,

16 cos cosi j k l a i j a k l
i j k l

A z z z z t t t t
M

ω ω   = − −  ∑ .  (17) 

 
The expected value of the fourth power of the estimated amplitude is thus: 

 

 { } { } ( ) ( )
4

4
, , ,

16 cos cosi j k l a i j a k l
i j k l

E A E z z z z t t t t
M

ω ω   = − −  ∑ .  (18) 

 

Inserting (5) and (18) into (16) and making use of { } { } { } { },Cov x y E xy E x E y= − , we have 
for the variance of the square estimated amplitude: 
 

 { } ( ) ( )2
2

4
, , ,

16 , cos cosi j k l a i j a k lA i j k l
Cov z z z z t t t t

M
σ ω ω   = − −  ∑ .  (19) 

 

 The actual voltage of a sample, z, can be expressed as i iz C w= + ,where: 
 

 ( )cosi x i iw A tω ϕ θ= + + ,  (20) 
 

It can be shown that the variance of the estimated square value of amplitude does not 
depend on the stimulus signal offset. As such (19) can be written as: 
 

 { } ( ) ( )2
2

4
, , ,

16 , cos cosi j k l a i j a k lA i j k l
Cov w w w w t t t t

M
σ ω ω   = − −  ∑ .  (21) 

 
Since the arguments of the two cosine functions are not random variables we can place 

them inside the covariance: 

 ( ) ( ){ }2
2

4
, , ,

16 cos , cosi j a i j k l a k lA i j k l
Cov w w t t w w t t

M
σ ω ω   = − −  ∑ .  (22) 

 
Inserting  (20) into (22) leads to: 

 

 
( ) ( ) ( )
( ) ( ) ( )

2

4
2

4
, , ,

cos cos cos ,16

cos cos cos

ω θ ϕ ω θ ϕ ω
σ

ω θ ϕ ω θ ϕ ω

  + + + + −  = . 
 + + + + −   

∑ x i i x j j a i j

A i j k l x k k x l l a k l

t t t tA Cov
M t t t t

  (23) 

 
Again using:  

 ( ) ( ) ( ) ( )1 1cos cos cos cos ,
2 2

a b a b a b= + + −   (24) 
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we can write: 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2

4
2

4
, , ,

cos cos

cos 2 cos ,4

cos cos

cos 2 cos

x i x j i j a i j

x i x j i j a i j
A i j k l x k x l k l a k l

x k x l k l a k l

t t t t

t t t tA Cov
M t t t t

t t t t

ω ω θ θ ω

ω ω θ θ ϕ ω
σ

ω ω θ θ ω

ω ω θ θ ϕ ω

  − + − − +  
  + + + + + −  =  
  − + − − +  
  + + + + + −  

∑ .  (25) 

 

Now using { } { } { }, , ,Cov a b c d Cov a c Cov b d+ + = + we can write (25) as: 
 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2

4
2

4
, , ,

4

4
, , ,

cos cos ,4

cos cos

cos 2 cos ,4 .
cos 2 cos

x i x j i j a i j

A i j k l x k x l k l a k l

x i x j i j a i j

i j k l x k x l k l a k l

t t t tA Cov
M t t t t

t t t tA Cov
M t t t t

ω ω θ θ ω
σ

ω ω θ θ ω

ω ω θ θ ϕ ω

ω ω θ θ ϕ ω

  − + − −  = + 
 − + − −   

  + + + + −  +  
 + + + + −   

∑

∑
  (26) 

 
Using (24) leads to: 
 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2

4
2

4
, , ,

4

4
, , ,

cos 2 2 cos ,

cos 2 2 cos

cos 2 2 cos 2 2 ,
,

cos 2 2 cos 2 2

x i x j i j i j

A i j k l x k x l k l k l

x i i j x j i j

i j k l x k k l x l k l

t tA Cov
M t t

t tA Cov
M t t

ω ω θ θ θ θ
σ

ω ω θ θ θ θ

ω θ θ ϕ ω θ θ ϕ

ω θ θ ϕ ω θ θ ϕ

 − + − + − = + 
− + − + −  

 + + + + + + + +  
+ + + + + + +  

∑

∑
  (27) 

 
Note that the index of the summations can be exchanged. For example i can become j and j 

can become i without changing the result of the summation. Using this allows us to write (27) 
as: 

 

( ) ( ){ }

( ) ( ){ }

( ) ( ){ }

( )

2

4
2

4
, , ,

, , ,

, , ,

cos 2 2 ,cos 2 2

            2 cos 2 2 ,cos

            cos ,cos

            4 cos 2 2 ,cos 2

x i x j i j x k x l k lA i j k l

x i x j i j k l
i j k l

i j k l
i j k l

x i i j x

M Cov t t t t
A

Cov t t

Cov

Cov t

σ ω ω θ θ ω ω θ θ

ω ω θ θ θ θ

θ θ θ θ

ω θ θ ϕ ω

= − + − − + − +

+ − + − − +

+ − − +

+ + + +

∑

∑

∑

( ){ }
, , ,

2k k l
i j k l

t θ θ ϕ+ + + .∑

  (28) 

 

Note that, being ϕ an uniformly distributed random variable between −π and π, 
( ){ }cos 0E α ϕ+ = . Using this we can simplify the 4th term of the second member of  (28) since: 

 

 

( ) ( ){ }
( ) ( ){ } ( ){ } ( ){ }

( ){ } ( ){ } ( ){ } ( ){ }

( ){ }

cos 2 ,cos 2

cos 2 cos 2 cos 2 cos 2

1 1cos cos 4 cos 2 cos 2
2 2
1 cos .
2

Cov

E E E

E E E E

E

α ϕ β ϕ

α ϕ β ϕ α ϕ β ϕ

α β α β ϕ α ϕ β ϕ

α β

+ + =

= + + − + + =

= − + + + − + + =

= −

  (29) 
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We have then: 
 

 

( ) ( ){ }

( ) ( ){ }

( ) ( ){ }
( )( ){ }

2

4
2

4
, , ,

, , ,

, , ,

,

cos 2 2 ,cos 2 2

            2 cos 2 2 ,cos

            cos ,cos

            2 cos 2

x i x j i j x k x l k lA i j k l

x i x j i j k l
i j k l

i j k l
i j k l

x i k i j k l
i j

M Cov t t t t
A

Cov t t

Cov

E t t

σ ω ω θ θ ω ω θ θ

ω ω θ θ θ θ

θ θ θ θ

ω θ θ θ θ

= − + − − + − +

+ − + − − +

+ − − +

+ − + + − −

∑

∑

∑

, ,
.

k l
∑

  (30) 

 

Substituting the covariance by expected values { } { } { } { }( ),Cov a b E ab E a E b= − , (30) can be 
written as: 

 

( ) ( ){ } ( ){ }

( ) ( ){ } ( ){ } ( ){ }

( )

2

24
2

4
, , , ,

, , , , ,

cos 2 2 cos 2 2 cos 2 2

       2 cos 2 2 cos 2 cos 2 2 cos

       cos co

x i x j i j x k x l k l x i x j i jA i j k l i j

x i x j i j k l x i x j i j k l
i j k l i j k l

i j

M E t t t t E t t
A

E t t E t t E

E

σ ω ω θ θ ω ω θ θ ω ω θ θ

ω ω θ θ θ θ ω ω θ θ θ θ

θ θ

 
= − + − − + − −  − + −  +

  

+ − + − − − − + − − +

+ −

∑ ∑

∑ ∑ ∑

( ){ } ( ){ } ( )( ){ }
2

, , , , , , ,
s cos 2 cos 2 .k l i j x i k i j k l

i j k l i j i j k l
E E t tθ θ θ θ ω θ θ θ θ

 
− −  −  + − + + − −

  
∑ ∑ ∑

(31) 

 
Note that the product of cosine functions may be written as the sum of cosine functions. 

For instance, looking at the 5th term in the second member of (31), we have: 
 

 

( ) ( ){ } ( ) ( )
, , , , , , , , ,

1 1cos cos cos cos .
2 2i j k l i j k l i j k l

i j k l i j k l i j k l
E E Eθ θ θ θ θ θ θ θ θ θ θ θ   − − = − + − + − − +   

   
∑ ∑ ∑   (32) 

 
Since the cosine functions are inside a summation, we can swap index k with index l in the 

last term of (32) without altering the summation. Doing this, results in the two terms in the 
second member of (32) being exactly the same. We thus have: 
 

 ( ) ( ){ } ( ){ }
, , , , , ,

cos cos cos .i j k l i j k l
i j k l i j k l

E Eθ θ θ θ θ θ θ θ− − = − + −∑ ∑   (33) 

 
Applying this reasoning also to the 1st and 3rd terms of the second member of (31) leads to: 
 

( ){ } ( ){ }
( ){ } ( ){ } ( ){ }

2

24
2

4
, , , ,

, , , , ,

cos 2 cos 2

            4 cos 2 2 cos 2 cos

            cos

x i j k l i j k l x i j i jA i j k l i j

x i j i j k l x i j i j i j
i j k l i j i j

i

M E t t t t E t t
A

E t t E t t E

E

σ ω θ θ θ θ ω θ θ

ω θ θ θ θ ω θ θ θ θ

θ

 
   = − + − + − + − −  − + −  +     

   + − + − + − − − + − − +   

+ −

∑ ∑

∑ ∑ ∑

( ){ } ( ){ }
2

, , , ,
cos .j k l i j

i j k l i j
Eθ θ θ θ θ

 
+ − −  − 

  
∑ ∑

 (34) 

 
The double summation in the 1st and 4th terms of the second member is equal to: 
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( ){ }

( )
( ) ( )

2

2 2

2

2

,

,

,

cos 2 2

1 , 
              cos 2 2 , 

              cos 2 2 cos 2 2 1

              0

              1

x i x j i j
i j

x i x ji j

x i x j x i x j
i j i j i

E t t

i j
e t t i j

e t t e t t

Me M

M e

θ

θ θ

θ

θ

σ

σ σ

σ

σ

ω ω θ θ

ω ω

ω ω ω ω

−

− −

=

−

−

− + − =

== = − ≠

= − − − + =

= − + =

= −


∑

∑

∑ ∑ ∑

.


  (35) 

 
The double summation in the 4th and 6th terms is: 

 

 ( ){ } 2 2 2 2
2 2

, , ,

1 , 
cos 1 .

, i j
i j i j i j i i

i j
E e e M e Me M

e i j
θ θ θ θ

θ
σ σ σ σ

σθ θ − − − −
−

=
− = = − + = − + ≠

∑ ∑ ∑ ∑ ∑   (36) 

 
The other summations are computed in the Appendixes. Inserting (35), (36), (47), (50) and 

(53) into (34) leads to: 
 

 

2 2 2 2 2 2 2
2

2 2 2 2

4 4
2 3 2 3 42

2

4
2 3 4

3

4 6 2 4 20 29 14

      6 24 36 24 6 .

A

A Ae e e e e e e
M M
A e e e e
M

θ θ θ θ θ θ θ

θ θ θ θ

σ σ σ σ σ σ σ

σ σ σ σ

σ − − − − − − −

− − − −

   = − + + − + − + +   
   

 + − + − + − 
 

 (37) 

 
5.  Bias of the Estimated Sine Wave Amplitude  
 

We are going to use the Taylor series to approximate the non linear relation between 
square amplitude and amplitude by a polynomial. This allows us to approximately determine 
the expected value of the estimated amplitude from the expected value of the square 
amplitude, given by (15),  and the variance of the square amplitude, given by (37) as done in 
[16]: 

 
2

2

2

2

3
.

8
A

A A
A

σ
µ µ

µ
−   (38) 

 
We define now the relative error of the estimation as: 

 

                                                                 .A
A

A
A

µ
ε

−
=                                                            (39) 

 
Inserting (15), (37) into (38) and (38) into (39), leads to: 

 
2 2 2 2 2 2 2

2 2 2 2

2 2

2 2

2 3 2 3 4
2

2 3 4
3

3
2

1 14 6 2 4 20 29 14

1 6 24 36 24 6
2 1

28 1

A

e e e e e e e
M M

e e e e
Me e

M
e e

M

θ θ θ θ θ θ θ

θ θ θ θ

θ θ

θ θ

σ σ σ σ σ σ σ

σ σ σ σ

σ σ

σ σ

ε

− − − − − − −

− − − −

− −

− −

    − + + − + − + +        
  + − + − + −     + − − 

 
  + −    

, (40) 

 
which is the relative bias of the sine wave amplitude estimation using the IEEE 1057 sine 
fitting algorithm in the presence of jitter. Note that the relative error does not depend on the 
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sine wave amplitude, but only on the number of samples and the phase noise (or jitter) 
standard deviation. 

In order to validate the approximation made in (38) and to check the correctness of the 
derivations carried out, we did a Monte Carlo [17] analysis of the estimator bias by  
simulating on a computer a set of data points from a sine wave with sampling instants 
corrupted by jitter, applying the sine fitting to estimate the amplitude and repeated the 
procedure 104 times to compute the expected value of the estimated amplitude. In Fig. 1a 
(markers) the relative error obtained is depicted as a function of the phase noise standard 
deviation for 10 and for 1000 samples (M). 
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)
M = 10

M = 1000
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ε
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 ε
A
 T
eo
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%
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 a)  b) 

 
Fig. 1. a) Relative error of the estimated sine wave amplitude as a function of phase noise standard deviation 

(markers, left).  A 2 V sine wave with fs/fx = M was used and 104 repetitions were carried out. The confidence 
intervals for a confidence level of 99.9 % are too small to be represented graphically. The solid lines represent 
the theoretical value given by (40). b) Difference between estimated amplitude relative error and theoretical 

value. 
 

It can be seen that the relative error of the expected value of the estimated amplitude 
obtained through numerical simulation, is in accordance with the theoretical value given by 
(40). In Fig. 1b, the deviation of estimated amplitude relative error and theoretical value as a 
function of phase noise standard deviation is shown with confidence intervals corresponding 
to 99.9 % confidence level for a normal distribution. All confidence intervals are around 0 
(null deviation from numerical simulation and theoretical values) which shows that the 
approximation made in (38) is valid for the conditions simulated. 

From (40) we can compute the limit when the number of samples goes to infinity: 
 

 
21

2lim 1.AM
e θσ

ε
−

→∞
= −  (41) 

 
This, which is the result obtained in [15], shows that the estimator is asymptotically biased 

in the presence of jitter since the relative error does not go to 0 when the number of samples 
tends to infinity. 
 
6. Conclusions 
 

The expression derived here for the bias of the fitted sine wave amplitude obtained with 
the 3-parameter sine algorithm, given in (40), shows that the estimator is biased when the 
acquired samples are affected by jitter which can be due to the analog converter itself or to 
phase noise in the sampling clock. The existence of this bias was previously mentioned in 
[15] but only the case of an infinite number of samples was considered. Here we presented an 
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expression that allows the computation of the estimator relative bias given the number of 
acquired samples and the standard deviation of the jitter or phase noise. 

Expression (40) can be used to correct the bias of the estimator if the amount of jitter 
present is known which can be accomplished using, for instance, the methods recommended 
in [6]. 

We limited here our study to the effect of jitter on the estimation of the sine wave 
amplitude, however we proceed doing work on the effect of jitter on other estimators related 
to the sine fitting, namely the sine wave offset, initial phase and frequency as well as other 
parameters derived from them like the module and argument of impedances determined with 
the help of sine fitting, or signal to noise and distortion ratio (SINAD) of analogue-to-digital 
converters. 

The influence of other non-ideal factors, like harmonic distortion, additive noise and 
frequency error, on the bias and on the variance of the estimators has also to be studied in the 
future to achieve a full understanding of the performance of sine fitting algorithms in real 
conditions. 
 
 
Appendix A 
 

In this appendix we compute the first term in the second member of (34). To determine an 
expression for the expected value we have to consider whether some of the indices are equal 
because is such cases the random variables θ will cancel each other out. There are 14 different 
cases where one or more of the 4 indices i, j, k and l are equal. Those cases are illustrated in 
(42). To make it easier to read the expressions that follow, we have chosen to attribute 
different symbols ( )•× ∗  to the indices. For example, the first case in (42) is identified by the 
symbols ( )• • • • . This means that all the 4 indices are the same. Note that this case 
encompasses many different possible values of the indices (they can be all equal to 1 or 2, or 
3,  etc.). In the second case in (42), for example,  indices i, j and k are the same and index l is 
different ( )• • •× . In the last case in (42) all the 4 indices are different. 

( ) ( ){ }

( )
( )
( )
( )

( )
( )

( )

2

2

2

2

2

2

4

, , ,

1
cos

cos

cos

cos
1 1

cos 2 2
1 1

cos
cos

x k x l

x k x l

x i x j

x i x j

x i x j

x i j k l i j k l
i j k l x k x

M
e t t M

e t t M

e t t M

e t t M
M M

e t t M
M M

E t t t t
e t t

θ

θ

θ

θ

θ

θ

σ

σ

σ

σ

σ

σ

ω ω

ω ω

ω ω

ω ω

ω ω

ω θ θ θ θ
ω ω

−

−

−

−

−

−

••••
− •••× −

− ••×• −

− •×•• −

− ×••• −
••×× −

− •×•× −
•××• − − + − + − + − =  −

∑ ( ) ( )
( )

( ) ( )
( ) ( )
( )

( ) ( )
( )

2

2

2

2

2

2

3

3

2 2

2

cos 2 2

cos 2

cos 2

cos 2 2

cos 2

cos 2 6

l

x i x j x l

x j x k

x i x l

x i x j x k

x i x j

x i x j x k x l

M M

e t t t M

e t t M M

e t t M M

e t t t M

e t t M M

e t t t t M M

θ

θ

θ

θ

θ

θ

σ

σ

σ

σ

σ

σ

ω ω ω

ω ω

ω ω

ω ω ω

ω ω

ω ω ω ω

−

−

−

−

−

−
















••× − −

− − •×•

− •× • − −

− ×•• − −

− + ×• •

− × •• − −

− + − •× ∗ −

, , ,i j k l 












∑  (42) 

 
Each of the 15 cases in the curly bracket corresponds to a different set of values of i, j, k 

and l. Since all those cases are mutually exclusive, the quadruple summation of the bracket in 
(42) can be expressed as the sum of 15 summations with different arguments (the ones in the 
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curly bracket). The value of those summations, not considering the exponential term, is 
indicated in the extreme-right column of (42).  

We will look now at how the value of some of those summations was obtained. The first 
summation in the curly brackets is the number of elements which in this case is M. The 
second summation can be seen as a complete double summation minus the cases where k = l: 
 

 ( ) ( ) ( )
,

cos cos cos 0x k x l x k x l x k x l
k l k l k l

t t t t t t M Mω ω ω ω ω ω
≠ =

− = − − − = − = −∑ ∑ ∑ . (43) 

 
 The complete summation has a null value since we have an integer number of periods of 

the cosine function and there are M cases where k = l. The summation will thus be – M. 
The sixth summation is: 

 ( )2

,
1 1 1 1

i j i j i j
M M M M

≠ =
= − = − = −∑ ∑ ∑ . (44) 

The ninth summation is: 
 

 ( ) ( ) ( ) ( )cos 2 cos 2x k x l x k x l
j k l k l

t t M t t M Mω ω ω ω
≠ ≠ ≠

− = − − = − −∑ ∑ . (45)  

 
The argument of this summation does not depend on j and there are M – 2 values of j 

which are different form k and l. This term thus has M – 2 times the summation on k and l 
which, as was seen in (43), equals – M. 

The 13th summation is a triple summation which can be split into a complete triple 
summation minus the cases where two or three indices are the same. The complete summation 
is null so we have:  

 

 
cos 2 cos 2 cos 2

                                                    cos 2 cos 2

x i x j x k x i x j x k x i x j x k
i j k i j k i j k

x i x j x k x i x j x k
i k j i j k

t t t t t t t t t

t t t t t t

ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω

≠ ≠ = ≠ ≠ =

= ≠ = =

     − − = − − − − − − −     

   − − − − − −   

∑ ∑ ∑

∑ ∑
. (46) 

 
 

The first 3 summations in the second member of (46) are equal to – M. The argument of 
the cosine in last summation is null since all the indices are the same. As the indices go from 
1 to M, there are M terms equal to 1 (cos(0)). The last term in (46) is thus M. The 13th 
summation in (42) is thus equal to 2M. 

The last summation in (42) has a quadruple summation where all the indices have different 
values. This partial summation can be seen as a complete quadruple summation minus the 
cases where some or all the indices are equal. The complete summation has a null value since 
we have an integer number of periods of the cosine function and there are 26 2M M−  cases 
where some or all the indices are equal. This is just the sum of the cases in all the other terms. 

Putting all the terms together leads to: 
 

 
( ) ( ){ } ( ) ( )

( )

2 2 2

2 2 2 2 2 2 2 2

4

, , ,

3 2 2 3 4 22 2

cos 2 1 4 4 2

   4 2 6 1 4 6 4 2 1 2 .

x i j k l i j k l
i j k l

E t t t t M M M Me Me M M e

Me M M e M e e e e M e e

θ θ θ

θ θ θ θ θ θ θ θ

σ σ σ

σ σ σ σ σ σ σ σ

ω θ θ θ θ − − −

− − − − − − − −

 − + − + − + − = + − − − − − + 

   + + − = − + − + − + − +   
   

∑
 (47) 
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Appendix B 
 

In this appendix we compute the third term in the second member of (34). Here we proceed 
as we did in Appendix B. All the 15 cases where the 4 indices can be equal to each other are 
enumerated and the expected value is computed individually for each of those cases. 

 ( ) ( ){ }

( )
( )

( )

( )( )

2

2

2

2

2

2

4

, , ,
3

1
1
1

cos

cos
1 1

cos
cos

cos
1 2

x i x j

x i x j

x i x j

x i x j
x i j i j k l

i j k l

M
e M M
e M M
e t t M

e t t M
M M

e t t M
t t M

E t t
e M M M
e

θ

θ

θ

θ

θ

θ

σ

σ

σ

σ

σ

σ

ω ω

ω ω

ω ω
ω ω

ω θ θ θ θ

−

−

−

−

−

−

−

• • • •
• • •× −

• •× • −

 − •× • • − 
 − × • • • − 

• •×× −

 − •× •× − 
 − •×× • −  − + − + − =  • •× − −

∑

( )
( )
( )
( )
( )
( )( )

2

2

2

2

2

2

3

2

cos 2

cos 2

cos 2

cos 2

cos 2

cos 2 3

x i x j

x j x j

x i x j

x i x j

x i x j

x i x j

t t M M

e t t M M

e t t M M

e t t M M

e t t M M

e t t M M M

θ

θ

θ

θ

θ

θ

σ

σ

σ

σ

σ

σ

ω ω

ω ω

ω ω

ω ω

ω ω

ω ω

−

−

−

−

−
















  − •× • − − 

 − •× • − − 
 − × • • − − 
 − × • • − − 

 − × • • − − 
 − •× ∗ − − − 

, , ,i j k l












∑   (48) 

 
Again, in the right extreme-right of (34) we indicate the value of the summations without 

considering the exponential terms. Equation (48) thus becomes: 
 

( ) ( ){ } ( )( ) ( )

( ) ( ) ( )( ) ( )

2 2 2

2

2 2

2 3 4

, , ,

22 2 3 2 3 2

cos 2 3 2 2

        1 2 1 2 1 2 3 2

        4 4 6 5 4 2

x i j i j k l
i j k l

E t t M M M e M M e Me

M M M M M M M M M M M M e

M M M M M e M M M e M M

θ θ θ

θ

θ θ

σ σ σ

σ

σ σ

ω θ θ θ θ − − −

−

− −

 − + − + − = − − −  + − −  − +    

+  + − −  +  − − + − − − −  =   

      = − + − + + − + − + −      

∑

2 23 4e Meθ θσ σ− − −

 (49) 

      
This can be further simplified to: 

 

 
( ) ( ){ }

2 2 2 2 2 2 2 2 2

, , ,

2 3 4 2 3 22 3

cos

       1 4 6 4 1 4 5 2 .

x i j i j k l
i j k l

E t t

M e e e e M e e e M e eθ θ θ θ θ θ θ θ θσ σ σ σ σ σ σ σ σ

ω θ θ θ θ

− − − − − − − − −

 − + − + − = 

     = − + − + − + − + − + −     
     

∑
 (50) 

 
 
Appendix C 
 

In this appendix we compute the fifth term in the second member of (34) as was done in 
Appendix B and C. The 15 different cases are: 
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1
1
1
1
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1
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1 2
1 2
1 2
1 2
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e M M
e M M
e M M
e M M
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e M M
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e M M M
e M M M
e M M M
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e M M M
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θ

θ

θ

θ

θ

θ

θ

θ

θ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

θ θ θ θ

−

−

−

−

−

−

−

−

−

−

• • • •
• • •× −

• •× • −

•× • • −

× • • • −
• •×× −

•× •× −
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•× • − −

•× • − −

× • • − −

× • • − −

∑

( )( )
( )( )( )

2

2

, , ,

2
1 2
1 2 3

i j k l

e M M M
e M M M M

θ

θ

σ

σ

−

−






















 × • • − −
 •× ∗ − − −

∑  (51) 

 
This summation thus becomes: 

 

( ){ }
( ) ( ) ( )( ) ( )( )( )

( )( ) ( )

( )( )

2 2

2 2

2

, , ,

2

3 4

2
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                 2 1 4 1 4 1 2 1 2 3

                 2 1 2 1

                 2 4 1 1
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M M M e M M e

M M M M M e

θ θ

θ θ

θ
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σ σ

σ

θ θ θ θ
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−
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=  + −  +  − + − −   − − −  +     

+  − −  +  −  =   

 = − + +  − −   

∑

( )( )( )
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2

2 2

2

3 4

1 2 3

                 2 1 2 1 .

M M M M e

M M M e M M e

θ

θ θ

σ

σ σ

−

− −

+  − − −  + 

+  − −  +  −    

      (52) 

  
Simplifying leads to: 

 

 
( ){ } 2 2 2 2

2 2 2 2 2 2 2 2

2 3 4

, , ,
2 3 4 2 3 22 3 4

cos 1 4 6 4

                     2 8 11 6 4 6 2 .

i j k l
i j k l
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θ θ θ θ

θ θ θ θ θ θ θ θ

σ σ σ σ

σ σ σ σ σ σ σ σ

θ θ θ θ − − − −

− − − − − − − −

  − + − = − + − + − +    

     + − + − + + − + +     
     

∑
 (53) 
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